Terminology

File system classes and other software are in namespace std:.filesystem. The filesystem
library (from C++ v. 17) 1s for file management (inspect what files are present, create, copy
and delete them, etc.). It does not provide facilities for reading and writing.

A file in filesystem library may be:
* regular file, for example data.txt, app.exe etc.
* directory

A path 1s a sequence of elements identifying the location of existing or not yet created file
in file system. The textual representation of a file is the pathname.

Paths can be absolute (unambiguously identifies the location, starts from the root) or
relative (starts from some location). Generally, a path contains:

* root name (optional)

* root directory (optional)

* sequence of file names separated by directory separators

* regular file name (optrional)

Raw string literals

const char *pTextl = "Hello world";
const char *pText2 { "Hello world" };
char arr[] { "Hello world" };

Here "Hello world" is a string constant or string literal. Remark that:
pTextl[5] = "\n"; // error

pTextl[5] = "\n"; // error

arr[5] = "\n'; // correct

A string literal may contain escape sequences:
const char *pText3 = "He said \"Hello everybody!\"\nWe answered \"You are welcome!\"";
const char *pText4 = "C:\\Temp\\Data.txt";

In raw string literals escape sequences are not needed. A raw string literal starts with R" (
and ends with)",

const char *pText5 = R"(He said "Hello everybody!"

We answered "You are welcome!")";

const char *pText6 = R"(C:\Temp\Data.txt)";

If you have embedded an escape sequence into raw string, it i1s processed as it 1s in text:
cout << R"(C:\\Temp)" << endl; // prints C:\\Temp

For text containing)" extended raw string literal syntax is needed, see
https://en.cppreference.com/w/cpp/language/string_literal.html

https://en.cppreference.com/w/cpp/language/string_literal.html

Path (1)
#include <filesystem>

using namespace std::filesystem;

Here we deal only with the most used methods of class path. The full description 1s on page
https://en.cppreference.com/w/cpp/filesystem/path.html

Constructors:

path pl { }; // empty path

path p2 ("c:\\temp\\data.txt"); // path to file c:\temp\data.txt

path p3("c:/temp/data.txt"); // the same, Windows accepts both slashes
path p4(R"(c:\temp\data.txt)"); // the same, raw string literal 1s used
path p5 { "c:\\temp\\data.txt" };

path p6 {"c:/temp/data.txt" };

path p7 {R"(c:\temp\data.txt)" };

string s1 ("c:\\temp\\data.txt");

wstring ws1 (L"c:\\temp\\data.txt");

path p8(s1); // pathname is a string object

path p8 (wsl);

path plO(R"(C:\Projects\University\IAX0587\Slides)"); // path to directory Slides
path pl1 =p2; // copy constructor

https://en.cppreference.com/w/cpp/filesystem/path.html

Path (2)

If we have got a path, we must at first check what 1s 1t actually:
int main(int arg c, char *argv|[])
{ // suppose that the first command line argument specifies the input data file
if (arge <2) {
cout << "Command line arguments missing" << endl;
return 1;
h
pathp {argv[1] j;
if (1s_regular file(p))
cout << "Input data file found" << endl;

else if (is_directory(p)) {
cout << "Command line argument specifies a directory" << endl;

return 1;

h
else if (exists(p)) {

cout << "Command line argument specifies a special file" << end];
return 1;

b

else {
cout << "Path specified by the ommand line argument does not exist" << endl;

return 1;

b

Path (3)
Rather often, more checking is needed, let us continue the example:
if (file size(p) ==0) {
cout << "Input data file 1s empty" << endl;
return 1;
b
if (!p.1s_absolute()) {
cout << "Relative path to input data is not allowed" << endl;
return 1;
)
if (tolower(p.root name().string().at(0)) !="c") {
// method root name() of class path returns path, in our example path("C:")
// method string() of class path returns the pathname as string
cout << "Wrong disk name" << endl;
return 1;
h
if (p.extension().string() !=".txt) {
// method extension() of class path returns path, in our example path(".txt")
cout << "Input data must be a .txt file" << endl;
return 1;

b

Path (4)
A path may be in generic format (in that case it 1s portable to computers running on other
platforms) or in native format (specific to the underlying system). For operating systems
following the POSIX standard (Linux, macOS) and Windows those two formats are
identical.
Although we mostly define a path with C-string or string object, the path is not a string:
path p ("c:\\temp\\data.txt");
string s = p.string();
wstring ws = p.wstring();
const wchar t *pc =p.c_str();
cout << p << endl; // prints "c:\\temp\\data.txt"

There are several methods to inspect the path:

bool bl = p.empty();

bool b2 = p.is_absolute();

bool b3 = p. has filename(); // 1.e. 1s not a directory, the same as is_regular file(p)

To decomposite a path:

path pl =p.root name(); // here path("c:")

path p2 = p.parent path(); // here path("c:\temp")

path p3 = p.relative path(); // here path("temp\data.txt")

path p4 = p.filename(); // complete name including the extension, here path("data.txt")
path p5 = p.stem(); // filename without extension, here path "data"

path p6 = p.extension(); // here path(".txt")

Path (5)
[teration through path 1s also possible:
path test { "c:/temp/data/testl.txt" };
for (path p: test) {
cout <<p<<'"; //prints "c:" "/" "temp" "data" "test1.txt"

h

Some methods for path modifications:

path p { "c:/temp" };

p.append("data.txt");

cout << p << endl; // prints "c:/temp\\data.txt"

cout << p.string() << endl; // prints c:/temp\data.txt (different formats)
p.replace filename("testdata.txt");

cout << p.string() << endl; // prints c:/temp\testdata.txt
p.replace extension("bin");

cout << p.string() << endl; // prints c:/temp\testdata.bin
p.remove filename();

cout << p.string() << endl; // prints c:/temp\

Current path
Method current path returns the absolute path of the current working directory. If you have
created a Visual Studio project in folder C:\Projects\Coursework, (i.e. the solution file is
C:\Projects\Coursework\Coursework.sin):
cout << current path().string() << endl; //prints C:\Projects\Coursework\Coursework
The executable, however, 1s 1n folder C:\Projects\Coursework\x64\Debug. Generally, the
current working directory may or may not be the directory in which the executable 1s
located.

The problem 1s that when you have delivered the release of your application, the user may
insert it into any folder. You application rather often needs additional auxiliary files for
input data. Mostly, those files must be in the same folder where ithe executable 1s located.
So, to open them the application needs to know not the current working directory but the
directory containing the executable itself and its auxiliary files.

There are no tools in filesystem library to retrieve the executable path. The solution
depends on the undelying operating system. In Windows 11 the following code worked
(put 1t into a separate *.cpp file):

#define WIN32 LEAN AND MEAN

#include "Windows.h"

char Buf[2048];

GetModuleFileName(NULL, Buf, 2048);

path p(Buf);
cout << p.string() << endl; // prints C:\Projects\Coursework\x64\Debug\Coursework.exe

File attributes (1)

Some functions (they are not class methods) to find the file attributes:

path p ("c:\\temp\\data.txt");

bool bl = exists(p);

bool b2 =1s_regular_file(p);

bool b3 =1s_directory(p);

bool b4 =1s_empty(p); // for files and directories

uintmax t = file size(p); // max width unsigned integer, i.e. unsigned long long

The file can be resized. If the size was increased, the modified file has zeroes at the end.
resize file(p, 1024UL); // now the size of file 1s 1 kB

It 1s possible to get information about the file system containing the path:
cout << space(p).capacity << endl; // total number of bytes
cout << space(p).free << endl; // total number of free bytes

All the functions presented above may throw exception (for example 1n case of incorrect
input data), therefore the call should be put into try-catch block. For example:
bool b;

try {
b =1s _empty(p);
h
catch (exeption &e) {
cout << e.what(); <<endl;

h

File attributes (2)

However, 1f the work of application is not controlled by human operator and the application
must make decisions automatically, printing of error messages 1s not an acceptable solution.

Therefore all the methods listed on the previous slide have two overloads, for example
bool 1s_empty(path p);
bool is_empty(path p, error code ec) noexcept;
About std.:error code class see https://en.cppreference.com/w/cpp/error/error_code.html.
Enumeration class errc (see https://en.cppreference.com/w/cpp/error/errc.html) presents the
full list of possible errors.
#include <system_error>
error code ec;
path p ("c:\\temp\\data.txt");
bool b =1s empty(p, ec);
if (ec) { // error has occurred, value of b has no meaning

if (ec == errc::no_such file or directory) {

................... // here a standard implicit cast 1s provided

The error code class also has method message(), returning a string.

https://en.cppreference.com/w/cpp/error/error_code.html
https://en.cppreference.com/w/cpp/error/errc.html

File management (1)

Some functions (they are not class methods) to manage regular files and directories:
path pl { "c:\\temp\\tests\\" };
bool b;
try { // https://en.cppreference.com/w/cpp/filesystem/create directory.html
b = create directory(pl); // creates an empty directory
// 1f the directory already exists, returns false, but does not
// throw exception

b

catch (exception &e) {
cout << e.what() << endl;

b

Here method create directory() works successfully only if directory c:\temp already exists.
path p2 { "c:\\temp\\tests\\data" };

try {
b = create directories(p2);
f

catch (exception &e) {
cout << e.what() << endl;

b

Here method create directories(), if necessary, creates also directories c.\temp and
c:\temp\tests.

https://en.cppreference.com/w/cpp/filesystem/create_directory.html

File management (2
Alternative solution: 8 ()

path pl { "c:\\temp\\tests\\data" }; // here c:\temp\tests does not exist
bool b = create directory(pl, ec);
if (ec) {
cout << ec.message() << endl; // prints The system cannot find the path specified

;

or
if (ec) {
if (ec == errc::no such file or directory) {

Similarly:
create directories(pl, ec);
if (ec) {

File management (3)

To create files use methods from fstream library (see slides from IAX0586).

path pl { "c:\\temp\\test\\datal.txt" }, p2 { "c:\\temp\\test" }, p3 { "c:\\temp" };
bool b1, b2, b3;
uintmax_t =n;
try { // https://en.cppreference.com/w/cpp/filesystem/remove.html
bl =remove(pl); // deletes file datal.txt, returns false if the file was not found
// (it 1s not an error)
b2 =remove(p2); // deletes empty directory c:\temp\test, throws exception if
// the directory 1s not empty
n =remove all(p3); // deletes directory c:\temp and all its subdirectories
// together with files inside them, returns the number of deleted files

// and directories

h

catch (exception &e¢) {
cout << e.what() << endl;
h
Alternative:
error code ec;
bl =remove(pl, ec);
n =remove all(p3, ec);

https://en.cppreference.com/w/cpp/filesystem/remove.html

File management (4)

path pl { "c:\\temp\\datal.txt" }, p2 { "c:\\temp"\\data2.txt };

bool b;

try { // https://en.cppreference.com/w/cpp/filesystem/copy_file.html
b =copy file(pl, p2, copy options::overwrite existing);

b

catch (exception &e) {

cout << e.what() << endl;
h
Here method copy file() copies datal into data?. If data?2 exists, it will be overwritten. In
case of copy options:: skip existing an existing file i1s not overwritten and copying fails. In
case of copy options::update existing an existing file is overwritten only if the original file
(here specified by path p/7) 1s newer. If no errorrs occurred, the return value shows was the
copying provided or not.

Copy options: see https://en.cppreference.com/w/cpp/filesystem/copy options.html

As the other file management functions, copy file(() method has two overloads:
bool copy file(path pl, path p2, copy options co);
bool copy_file(path pl, path p2, copy options co, error code ec);

The both overloads may throw exceptions.

https://en.cppreference.com/w/cpp/filesystem/copy_file.html
https://en.cppreference.com/w/cpp/filesystem/copy_options.html

File management (5)

path pl { "c:\\temp" }, p2 { "c:\\temp1" };
try { // https://en.cppreference.com/w/cpp/filesystem/copy.html
copy(pl, p2, copy options::recursive);

h

catch (exception &e) {
cout << e.what() << endl;
)
Here c:\temp with all its files and subdirectories are copied into c:\templ. Method copy()
copies also files, for example:

path p3 { "c:\\temp\\datal.txt" }, p4 { "c:\\temp"\\data2.txt };

try {
copy(p3, p4, copy options::skip existing);
h

catch (exception &e) {
cout << e.what() << endl;

b

Method copy() has no output value. The both overloads can throw exceptions.
void copy(path pl, path p2, copy options co);
void copy(path pl, path p2, copy options co, error code ec);

https://en.cppreference.com/w/cpp/filesystem/copy.html

File management (6)

path pl { "c:\\temp\\tests\\data" }, p2 { "c:\\temp\\tests\\old data" };
try { // https://en.cppreference.com/w/cpp/filesystem/rename.html
rename(pl, p2);

h

catch (exception &e) {
cout << e.what() << endl;
h
Here directory c:\temp\tests\data is renamed to c:\temp\tests\old data.
path p3 { "c:\\temp\\tests\\old data" }, p4 { "c:\\experiments" };

try {
rename(p3, p4);
h

catch (exception &e) {
cout << e.what() << endl;

b

Here old data is deleted and its contents copied into new directory experiments. Method
rename() may just rename, move to another location or do the both. Overloads are:

void rename(path pl, path p2);

void rename(path pl, path p2, error code ec); noexept

https://en.cppreference.com/w/cpp/filesystem/rename.html

Iterating over directories

path p { "C:\\Projects\\Coursework" };

directory iterator dit { p };

for (const directory entry& entry : dit)

{ // https://en.cppreference.com/w/cpp/filesystem/directory iterator.html
// https://en.cppreference.com/w/cpp/filesystem/directory entry.html
cout << entry.path().string() << endl;

b

Prints all the files and subdirectories in C:\Projects\Coursework, but not the contents of
subdirectories

recursive directory iterator rdit{ p };
for (const directory entry& entry : rdit)
{ // https://en.cppreference.com/w/cpp/filesystem/recursive directory_iterator.html

cout << entry.path().string() << endl;
h
Prints the complete tree, 1.e. all the files in all the subdirectories. Class directory entry has
several methods analogous to methods from slide File attributes (1). Example:
for (const directory entry& entry : rdit) {

if entry.is regular file() { // prints only the files and their lengths

cout << entry.path().string() <<'' << entry.file size() <<" bytes" << endl;

h
h

https://en.cppreference.com/w/cpp/filesystem/directory_iterator.html
https://en.cppreference.com/w/cpp/filesystem/directory_entry.html
https://en.cppreference.com/w/cpp/filesystem/recursive_directory_iterator.html

	Slide 1: Terminology
	Slide 2: Raw string literals
	Slide 3: Path (1)
	Slide 4: Path (2)
	Slide 5: Path (3)
	Slide 6: Path (4)
	Slide 7: Path (5)
	Slide 8: Current path
	Slide 9: File attributes (1)
	Slide 10: File attributes (2)
	Slide 11: File management (1)
	Slide 12: File management (2)
	Slide 13: File management (3)
	Slide 14: File management (4)
	Slide 15: File management (5)
	Slide 16: File management (6)
	Slide 17: Iterating over directories

