
Terminology

File system classes and other software are in namespace std::filesystem. The filesystem

library (from C++ v. 17) is for file management (inspect what files are present, create, copy

and delete them, etc.). It does not provide facilities for reading and writing.

A file in filesystem library may be:

• regular file, for example data.txt, app.exe etc.

• directory

A path is a sequence of elements identifying the location of existing or not yet created file

in file system. The textual representation of a file is the pathname.

Paths can be absolute (unambiguously identifies the location, starts from the root) or

relative (starts from some location). Generally, a path contains:

• root name (optional)

• root directory (optional)

• sequence of file names separated by directory separators

• regular file name (optrional)

Raw string literals

const char *pText1 = "Hello world";

const char *pText2 { "Hello world" };

char arr[] { "Hello world" };

Here "Hello world" is a string constant or string literal. Remark that:

pText1[5] = '\n'; // error

pText1[5] = '\n'; // error

arr[5] = '\n'; // correct

A string literal may contain escape sequences:

const char *pText3 = "He said \"Hello everybody!\"\nWe answered \"You are welcome!\"";

const char *pText4 = "C:\\Temp\\Data.txt";

In raw string literals escape sequences are not needed. A raw string literal starts with R" (

and ends with)".

const char *pText5 = R"(He said "Hello everybody!"

We answered "You are welcome!")";

const char *pText6 = R"(C:\Temp\Data.txt)";

If you have embedded an escape sequence into raw string, it is processed as it is in text:

cout << R"(C:\\Temp)" << endl; // prints C:\\Temp

For text containing)" extended raw string literal syntax is needed, see

https://en.cppreference.com/w/cpp/language/string_literal.html

https://en.cppreference.com/w/cpp/language/string_literal.html

Path (1)

#include <filesystem>

using namespace std::filesystem;

Here we deal only with the most used methods of class path. The full description is on page

https://en.cppreference.com/w/cpp/filesystem/path.html

Constructors:

path p1 { }; // empty path

path p2 ("c:\\temp\\data.txt"); // path to file c:\temp\data.txt

path p3("c:/temp/data.txt"); // the same, Windows accepts both slashes

path p4(R"(c:\temp\data.txt)"); // the same, raw string literal is used

path p5 { "c:\\temp\\data.txt" };

path p6 {"c:/temp/data.txt" };

path p7 {R"(c:\temp\data.txt)" };

string s1 ("c:\\temp\\data.txt");

wstring ws1 (L"c:\\temp\\data.txt");

path p8(s1); // pathname is a string object

path p8 (ws1);

path p10(R"(C:\Projects\University\IAX0587\Slides)"); // path to directory Slides

path p11 = p2; // copy constructor

https://en.cppreference.com/w/cpp/filesystem/path.html

Path (2)
If we have got a path, we must at first check what is it actually:

int main(int arg c, char *argv[])

{ // suppose that the first command line argument specifies the input data file

 if (argc < 2) {

 cout << "Command line arguments missing" << endl;

 return 1;

 }

 path p { argv[1] };

 if (is_regular_file(p))

 cout << "Input data file found" << endl;

 else if (is_directory(p)) {

 cout << "Command line argument specifies a directory" << endl;

 return 1;

}

else if (exists(p)) {

 cout << "Command line argument specifies a special file" << endl;

 return 1;

}

else {

 cout << "Path specified by the ommand line argument does not exist" << endl;

 return 1;

}

Path (3)
Rather often, more checking is needed, let us continue the example:

if (file_size(p) == 0) {

 cout << "Input data file is empty" << endl;

 return 1;

}

if (!p.is_absolute()) {

 cout << "Relative path to input data is not allowed" << endl;

 return 1;

}

if (tolower(p.root_name().string().at(0)) != 'c') {

 // method root_name() of class path returns path, in our example path("C:")

 // method string() of class path returns the pathname as string

 cout << "Wrong disk name" << endl;

 return 1;

}

if (p.extension().string() != ".txt) {

 // method extension() of class path returns path, in our example path(".txt")

 cout << "Input data must be a .txt file" << endl;

 return 1;

}

Path (4)
A path may be in generic format (in that case it is portable to computers running on other

platforms) or in native format (specific to the underlying system). For operating systems

following the POSIX standard (Linux, macOS) and Windows those two formats are

identical.

Although we mostly define a path with C-string or string object, the path is not a string:

path p ("c:\\temp\\data.txt");

string s = p.string();

wstring ws = p.wstring();

const wchar_t *pc = p.c_str();

cout << p << endl; // prints "c:\\temp\\data.txt"

There are several methods to inspect the path:

bool b1 = p.empty();

bool b2 = p.is_absolute();

bool b3 = p. has_filename(); // i.e. is not a directory, the same as is_regular_file(p)

To decomposite a path:

path p1 = p.root_name(); // here path("c:")

path p2 = p.parent_path(); // here path("c:\temp")

path p3 = p.relative_path(); // here path("temp\data.txt")

path p4 = p.filename(); // complete name including the extension, here path("data.txt")

path p5 = p.stem(); // filename without extension, here path "data"

path p6 = p.extension(); // here path(".txt")

Path (5)
Iteration through path is also possible:

path test { "c:/temp/data/test1.txt" };

for (path p: test) {

 cout << p << ' '; // prints "c:" "/" "temp" "data" "test1.txt"

}

Some methods for path modifications:

path p { "c:/temp" };

p.append("data.txt");

cout << p << endl; // prints "c:/temp\\data.txt"

cout << p.string() << endl; // prints c:/temp\data.txt (different formats)

p.replace_filename("testdata.txt");

cout << p.string() << endl; // prints c:/temp\testdata.txt

p.replace_extension("bin");

cout << p.string() << endl; // prints c:/temp\testdata.bin

p.remove_filename();

cout << p.string() << endl; // prints c:/temp\

Current path
Method current_path returns the absolute path of the current working directory. If you have

created a Visual Studio project in folder C:\Projects\Coursework, (i.e. the solution file is

C:\Projects\Coursework\Coursework.sln):

cout << current_path().string() << endl; //prints C:\Projects\Coursework\Coursework

The executable, however, is in folder C:\Projects\Coursework\x64\Debug. Generally, the

current working directory may or may not be the directory in which the executable is

located.

The problem is that when you have delivered the release of your application, the user may

insert it into any folder. You application rather often needs additional auxiliary files for

input data. Mostly, those files must be in the same folder where ithe executable is located.

So, to open them the application needs to know not the current working directory but the

directory containing the executable itself and its auxiliary files.

There are no tools in filesystem library to retrieve the executable path. The solution

depends on the undelying operating system. In Windows 11 the following code worked

(put it into a separate *.cpp file):

#define WIN32_LEAN_AND_MEAN

#include "Windows.h"

char Buf[2048];

GetModuleFileName(NULL, Buf, 2048);

path p(Buf);

cout << p.string() << endl; // prints C:\Projects\Coursework\x64\Debug\Coursework.exe

File attributes (1)
Some functions (they are not class methods) to find the file attributes:

path p ("c:\\temp\\data.txt");

bool b1 = exists(p);

bool b2 = is_regular_file(p);

bool b3 = is_directory(p);

bool b4 = is_empty(p); // for files and directories

uintmax_t = file_size(p); // max width unsigned integer, i.e. unsigned long long

The file can be resized. If the size was increased, the modified file has zeroes at the end.

resize_file(p, 1024UL); // now the size of file is 1 kB

It is possible to get information about the file system containing the path:

cout << space(p).capacity << endl; // total number of bytes

cout << space(p).free << endl; // total number of free bytes

All the functions presented above may throw exception (for example in case of incorrect

input data), therefore the call should be put into try-catch block. For example:

bool b;

try {

 b = is_empty(p);

}

catch (exeption &e) {

 cout << e.what(); << endl;

}

File attributes (2)
However, if the work of application is not controlled by human operator and the application

must make decisions automatically, printing of error messages is not an acceptable solution.

Therefore all the methods listed on the previous slide have two overloads, for example

bool is_empty(path p);

bool is_empty(path p, error_code ec) noexcept;

About std::error_code class see https://en.cppreference.com/w/cpp/error/error_code.html.

Enumeration class errc (see https://en.cppreference.com/w/cpp/error/errc.html) presents the

full list of possible errors.

#include <system_error>

error_code ec;

path p ("c:\\temp\\data.txt");

bool b = is_empty(p, ec);

if (ec) { // error has occurred, value of b has no meaning

 if (ec == errc::no_such_file_or_directory) {

 ………………. // here a standard implicit cast is provided

 }

 else if {ec == …………….)

 ………………………

 ……………………...

}

The error_code class also has method message(), returning a string.

https://en.cppreference.com/w/cpp/error/error_code.html
https://en.cppreference.com/w/cpp/error/errc.html

File management (1)

Some functions (they are not class methods) to manage regular files and directories:

path p1 { "c:\\temp\\tests\\" };

bool b;

try { // https://en.cppreference.com/w/cpp/filesystem/create_directory.html

 b = create_directory(p1); // creates an empty directory

 // if the directory already exists, returns false, but does not

 // throw exception

}

catch (exception &e) {

 cout << e.what() << endl;

}

Here method create_directory() works successfully only if directory c:\temp already exists.

path p2 { "c:\\temp\\tests\\data" };

try {

 b = create_directories(p2);

}

catch (exception &e) {

 cout << e.what() << endl;

}

Here method create_directories(), if necessary, creates also directories c:\temp and

c:\temp\tests.

https://en.cppreference.com/w/cpp/filesystem/create_directory.html

File management (2)
Alternative solution:

path p1 { "c:\\temp\\tests\\data" }; // here c:\temp\tests does not exist

bool b = create_directory(p1, ec);

if (ec) {

 cout << ec.message() << endl; // prints The system cannot find the path specified

}

or

if (ec) {

 if (ec == errc::no_such_file_or_directory) {

 ……………….

 }

 else if {ec == errc::not_a_directory) {

 ………………

 }

 ……………………………

}

Similarly:

create_directories(p1, ec);

if (ec) {

 ………………

}

File management (3)

To create files use methods from fstream library (see slides from IAX0586).

path p1 { "c:\\temp\\test\\data1.txt" }, p2 { "c:\\temp\\test" }, p3 { "c:\\temp" };

bool b1, b2, b3;

uintmax_t = n;

try { // https://en.cppreference.com/w/cpp/filesystem/remove.html

 b1 = remove(p1); // deletes file data1.txt, returns false if the file was not found

 // (it is not an error)

 b2 = remove(p2); // deletes empty directory c:\temp\test, throws exception if

 // the directory is not empty

 n = remove_all(p3); // deletes directory c:\temp and all its subdirectories

 // together with files inside them, returns the number of deleted files

 // and directories

}

catch (exception &e) {

 cout << e.what() << endl;

}

Alternative:

error_code ec;

b1 = remove(p1, ec);

n = remove_all(p3, ec);

https://en.cppreference.com/w/cpp/filesystem/remove.html

File management (4)

path p1 { "c:\\temp\\data1.txt" }, p2 { "c:\\temp"\\data2.txt };

bool b;

try { // https://en.cppreference.com/w/cpp/filesystem/copy_file.html

 b = copy_file(p1, p2, copy_options::overwrite_existing);

}

catch (exception &e) {

 cout << e.what() << endl;

}

Here method copy_file() copies data1 into data2. If data2 exists, it will be overwritten. In

case of copy_options:: skip_existing an existing file is not overwritten and copying fails. In

case of copy_options::update_existing an existing file is overwritten only if the original file

(here specified by path p1) is newer. If no errorrs occurred, the return value shows was the

copying provided or not.

Copy options: see https://en.cppreference.com/w/cpp/filesystem/copy_options.html

As the other file management functions, copy_file(() method has two overloads:

bool copy_file(path p1, path p2, copy_options co);

bool copy_file(path p1, path p2, copy_options co, error_code ec);

The both overloads may throw exceptions.

https://en.cppreference.com/w/cpp/filesystem/copy_file.html
https://en.cppreference.com/w/cpp/filesystem/copy_options.html

File management (5)

path p1 { "c:\\temp" }, p2 { "c:\\temp1" };

try { // https://en.cppreference.com/w/cpp/filesystem/copy.html

 copy(p1, p2, copy_options::recursive);

}

catch (exception &e) {

 cout << e.what() << endl;

}

Here c:\temp with all its files and subdirectories are copied into c:\temp1. Method copy()

copies also files, for example:

path p3 { "c:\\temp\\data1.txt" }, p4 { "c:\\temp"\\data2.txt };

try {

 copy(p3, p4, copy_options::skip_existing);

}

catch (exception &e) {

 cout << e.what() << endl;

}

Method copy() has no output value. The both overloads can throw exceptions:

void copy(path p1, path p2, copy_options co);

void copy(path p1, path p2, copy_options co, error_code ec);

https://en.cppreference.com/w/cpp/filesystem/copy.html

File management (6)

path p1 { "c:\\temp\\tests\\data" }, p2 { "c:\\temp\\tests\\old_data" };

try { // https://en.cppreference.com/w/cpp/filesystem/rename.html

 rename(p1, p2);

}

catch (exception &e) {

 cout << e.what() << endl;

}

Here directory c:\temp\tests\data is renamed to c:\temp\tests\old_data.

path p3 { "c:\\temp\\tests\\old_data" }, p4 { "c:\\experiments" };

try {

 rename(p3, p4);

}

catch (exception &e) {

 cout << e.what() << endl;

}

Here old_data is deleted and its contents copied into new directory experiments. Method

rename() may just rename, move to another location or do the both. Overloads are:

void rename(path p1, path p2);

void rename(path p1, path p2, error_code ec); noexept

https://en.cppreference.com/w/cpp/filesystem/rename.html

Iterating over directories
path p { "C:\\Projects\\Coursework" };

directory_iterator dit { p };

for (const directory_entry& entry : dit)

{ // https://en.cppreference.com/w/cpp/filesystem/directory_iterator.html

 // https://en.cppreference.com/w/cpp/filesystem/directory_entry.html

 cout << entry.path().string() << endl;

}

Prints all the files and subdirectories in C:\Projects\Coursework, but not the contents of

subdirectories

recursive_directory_iterator rdit{ p };

for (const directory_entry& entry : rdit)

{ // https://en.cppreference.com/w/cpp/filesystem/recursive_directory_iterator.html

 cout << entry.path().string() << endl;

}

Prints the complete tree, i.e. all the files in all the subdirectories. Class directory_entry has

several methods analogous to methods from slide File attributes (1). Example:

for (const directory_entry& entry : rdit) {

 if entry.is_regular_file() { // prints only the files and their lengths

 cout << entry.path().string() << ' ' << entry.file_size() << " bytes" << endl;

 }

}

https://en.cppreference.com/w/cpp/filesystem/directory_iterator.html
https://en.cppreference.com/w/cpp/filesystem/directory_entry.html
https://en.cppreference.com/w/cpp/filesystem/recursive_directory_iterator.html

	Slide 1: Terminology
	Slide 2: Raw string literals
	Slide 3: Path (1)
	Slide 4: Path (2)
	Slide 5: Path (3)
	Slide 6: Path (4)
	Slide 7: Path (5)
	Slide 8: Current path
	Slide 9: File attributes (1)
	Slide 10: File attributes (2)
	Slide 11: File management (1)
	Slide 12: File management (2)
	Slide 13: File management (3)
	Slide 14: File management (4)
	Slide 15: File management (5)
	Slide 16: File management (6)
	Slide 17: Iterating over directories

